PERSONAL INFORMATION
Name: Jian Zhou
Gender: Male
Title: Doctor
Position: Principle investigator (PI)
CONTACT INFORMATION
Email: zhoujian@cqmu.edu.cn
Address: Institute of Neuroscience,
School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
Phone: +86-023-68485763
EDUCATION EXPERIENCE
2004-2009 Ph.D., College of Life Sciences, Graduate School, Hunan Normal University, Changsha, P. R. China
2000-2004 Undergraduate, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, P. R. China
WORKING EXPERIENCE
2020-present Research assistant, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
2012-2020 Research assistant, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
2009-2012 Research assistant, Institute of Neuroscience, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
RESEARCH INTERESTS
(1) Discovery and development of diagnostic biomarkers for neuropsychiatric diseases
(2) Research on drug targets based on drug-protein-disease interaction networks
(3) Research and development of drug targets based on disease proteomics
(4) Research on pathophysiological mechanisms using neuropsychiatric disease proteomics
PUBLICATIONS (#Co-first authors; *Correspondence authors)
[1] Zhan Q #, Wang L#, Liu N, Yuan Y, Deng L, Ding Y, Wang, Zhou J*, Xie L *. Serum metabolomics study of narcolepsy type 1 based on ultra-performance liquid chromatography-tandem mass spectrometry. Amino Acids. 2023. (IF: 3.789)
[2] Liu Y#, Zhang M#, Liu Z#, Li S#, Liu H, Huang R, Yi F*, Zhou J*. A strategy can be used to analyze intracellular interaction proteomics of cell-surface receptors. Amino Acids. 2023, 55(2):263-273. (IF: 3.789)
[3] Yang C#, Zhang M#, Li S#, Yi F, Huang H, Xie H*, Liu H, Huang R, Zhou J*. Effects of Camk2b Overexpression and Underexpression on the Proteome of Rat Hippocampal Neurons. Neuroscience. 2022, 503:58-68. (IF: 3.708)
[4] Cai X#, Yang C#, Chen J#, Gong W#, Yi F, Liao W, Huang R, Xie L*, Zhou J*. Proteomic Insights Into Susceptibility and Resistance to Chronic-Stress-Induced Depression or Anxiety in the Rat Striatum. Front Mol Biosci. 2021, 8:730473. (IF: 6.113)
[5] Tian F#, Liu D#, Chen J#, Liao W, Gong W, Huang R, Xie L*, Yi F*, Zhou J*. Proteomic Response of Rat Pituitary Under Chronic Mild Stress Reveals Insights Into Vulnerability and Resistance to Anxiety or Depression. Front Genet. 2021, 12:751999. (IF: 4.772)
[6] Liu D#, Cai X#, Wang L#, Yi F, Liao W, Huang R, Fang C*, Chen J*, Zhou J*. Comparative Proteomics of Rat Olfactory Bulb Reveal Insights into Susceptibility and Resiliency to Chronic-stress-induced Depression or Anxiety. Neuroscience. 2021, 473:29-43. (IF: 3.708)
[7] Liu Y#, Tian F#, Li S#, Chen W#, Gong W, Xie H, Liu D, Huang R, Liao W, Yi F, Zhou J*. Global effects of RAB3GAP1 dysexpression on the proteome of mouse cortical neurons. Amino Acids. 2021, 53(9):1339-1350. (IF: 3.789)
[8] Liao W#, Liu Y#, Huang H#, Xie H, Gong W, Liu D, Tian F, Huang R, Yi F*, Zhou J*. Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol Stress. 2021, 15:100347. (IF: 7.142)
[9] Gong W#, Liao W#, Fang C#, Liu Y, Xie H, Yi F, Huang R, Wang L*, Zhou J*. Analysis of Chronic Mild Stress-Induced Hypothalamic Proteome: Identification of Protein Dysregulations Associated With Vulnerability and Resiliency to Depression or Anxiety. Front Mol Neurosci. 2021, 14:633398. (IF: 6.261)
[10] Liao W#, Liu Y#, Wang L#, Cai X, Xie H, Yi F, Huang R, Fang C*, Xie P*, Zhou J*. Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl Psychiatry. 2021, 11(1):143. (IF: 7.989)
[11] Qin Z#, Gu M#, Zhou J#, Zhang W, Zhao N, Lü Y, Yu W*. Triggering receptor expressed on myeloid cells 2 activation downregulates toll-like receptor 4 expression and ameliorates cognitive impairment in the Abeta(1-42)-induced Alzheimer's disease mouse model. Synapse. 2020, 74(10):e22161. (IF: 2.561)
[12] Tang M#, Huang H#, Li S#, Zhou M, Liu Z, Huang R, Liao W, Xie P*, Zhou J*. Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry. 2019, 9(1):260. (IF: 5.279)
[13] Zhou J#, Yu W#, Zhang M#, Tian X, Li Y, Lü Y*. Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 Transgenic Mice: A Potential Link Between Alzheimer's Disease and Systemic Inflammation. Neurochem Res. 2019, 44(5):1138-1151. (IF: 3.037)
[14] Xie H#, Huang H#, Tang M, Wu Y, Huang R, Liu Z, Zhou M, Liao W, Zhou J*. iTRAQ-Based Quantitative Proteomics Suggests Synaptic Mitochondrial Dysfunction in the Hippocampus of Rats Susceptible to Chronic Mild Stress. Neurochem Res. 2018, 43(12):2372-2383. (IF: 2.782)
[15] Zhou M#, Tang M#, Li S#, Peng L#, Huang H, Fang Q, Liu Z, Xie P*, Li G*, Zhou J*. Effective lock-in strategy for proteomic analysis of corona complexes bound to amino-free ligands of gold nanoparticles. Nanoscale. 2018, 10(26):12413-12423. (IF: 6.97)
[16] Sun Z, Zhou S, Tang J, Ye T, Li J, Liu D, Zhou J*, Wang J*, Rosie Xing H*. Sec23a mediates miR-200c augmented oligometastatic to polymetastatic progression. EBioMedicine. 2018, 37:47-55. (IF: 6.68)
[17] Zhou M#, Liu Z#, Yu J#, Li S#, Tang M, Zeng L, Wang H, Xie H, Peng L, Huang H, Zhou C, Xie P*, Zhou J*. Quantitative Proteomic Analysis Reveals Synaptic Dysfunction in the Amygdala of Rats Susceptible to Chronic Mild Stress. Neuroscience. 2018, 376:24-39. (IF: 3.244)
[18] Liu Z#, Li S#, Wang H#, Tang M, Zhou M, Yu J, Bai S, Li P, Zhou J*, Xie P*. Proteomic and network analysis of human serum albuminome by integrated use of quick crosslinking and two-step precipitation. Sci Rep. 2017, 7(1):9856. (IF: 4.122)
[19] Qiao R#, Li S#, Zhou M#, Chen P, Liu Z, Tang M, Zhou J*. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience. 2017, 353:119-132. (IF: 3.382)
[20] Zhou J#, Liu Z#, Yu J#, Han X, Fan S, Shao W, Chen J, Qiao R, Xie P*. Quantitative Proteomic Analysis Reveals Molecular Adaptations in the Hippocampal Synaptic Active Zone of Chronic Mild Stress-Unsusceptible Rats. Int J Neuropsychopharmacol. 2016, 19(1). (IF: 4.712)
[21] Liu Z#, Fan S#, Liu H, Yu J, Qiao R, Zhou M, Yang Y, Zhou J*, Xie P*. Enhanced Detection of Low-Abundance Human Plasma Proteins by Integrating Polyethylene Glycol Fractionation and Immunoaffinity Depletion. PLoS One. 2016, 11(11):e0166306. (IF: 2.766)
[22] Wu D#, Peng Y#, Zhou J#, Yang YT#, Rao CL, Bai SJ, Zhou XY, Chen J, Liao L, Liang ZH, Yang DY, Xie P*. Identification and validation of argininosuccinate synthase as a candidate urinary biomarker for major depressive disorder. Clin Chim Acta. 2015, 451(Pt B):142-8. (IF: 2.799)
[23] Han X#, Shao W#, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J*, Xie P*. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience. 2015, 298:220-92. (IF: 3.231)
[24] Pan J#, Liu H#, Zhou J#, Liu Z#, Yang Y, Peng Y, You H, Yang D, Xie P*. Ipsilateral hippocampal proteomics reveals mitochondrial antioxidative stress impairment in corticallesioned chronic mild stressed rats. Curr Mol Med. 2014, 14(9):1186-96. (IF: 3.612)
[25] Liu H#, Zhou J#, Fang L#, Liu Z, Fan S, Xie P*. Acute tryptophan depletion reduces nitric oxide synthase in the rat hippocampus. Neurochem Res. 2013, 38(12):2595-603. (IF: 2.551)
[26] Hu Y#, Zhou J#, Fang L#, Liu H, Zhan Q, Luo D, Zhou C, Chen J, Li Q, Xie P*. Hippocampal synaptic dysregulation of exo/endocytosis-associated proteins induced in a chronic mild stressed rat model. Neuroscience, 2013, 230:1-12. (IF: 3.327)
[27] Zhou J#, Bi D#, Lin Y, Chen P, Wang X*, Liang S*. Shotgun proteomics and network analysis of ubiquitin-related proteins from human breast carcinoma epithelial cells. Mol Cell Biochem. 2012, 359(1-2):375-84. (IF: 2.329)
[28] Zhou J#, Hu Y#, Lin Y, Liu H, Xie P*. Preparation and application of a partially degradable gel in mass spectrometry-based proteomic analysis. J Chromatogr B. 2011, 879(28):2957-2962. (IF: 2.888)
[29] Zhou J, Li J, Li J, Chen P, Wang X* and Liang S*. Dried polyacrylamide gel absorption: A method for efficient elimination of the interferences from SDS-solubilized protein samples in mass spectrometry-based proteome analysis. Electrophoresis, 2010, 31(23-24):3816-3822. (IF: 3.569)
[30] Zhou J#, Xiong J#, Li J, Huang S, Zhang H, He Q, Lin Y, Chen P, Wang X*, Liang S*. Gel absorption-based sample preparation for the analysis of membrane proteome by mass spectrometry. Anal Biochem. 2010, 404(2):204-210. (IF: 3.236)
[31] Zhou J, Huang S, Bi D, Zhang H, Li J, Lin Y, Chen P, Wang X*, Liang S*. Analysis of integral membrane proteins by heat gel-embedment combined with improved in-gel digestions. Electrophoresis 2009, 30(23):4109-4117. (IF: 3.077)
[32] Zhou J, Lin Y, Deng X, Shen J, He Q, Chen P, Wang X*, Liang S*. Development and application of a two-phase, on-membrane digestion method in the analysis of membrane proteome. J Proteome Res. 2008, 7(4):1778-1783. (IF: 5.684)
[33] Zhou J, Zhou T, Cao R, Liu Z, Shen J, Chen P, Wang X*, Liang S*. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J Proteome Res. 2006, 5(10):2547-2553. (IF: 5.151)